BTEC Science

A guide to help you prepare yourself for studying BTEC Science

Book Recommendations

Junk DNA

Our DNA is so much more complex than you probably realise; this book will really deepen your understanding of the work you will do on Genetics.

A Short History of Nearly Everything

A whistle-stop tour through many aspects of history from the Big Bang to now. This is a really accessible read that will refamiliarise you with common concepts and introduce you to some of the more colourful characters from the history of science!

An easy read.. **Frankenstein's cat** Discover how glow in the dark fish are made and more great Biotechnology breakthroughs.

Movie Recommendations

Here are some films based on real life scientists and discoveries - great watching for a rainy day!

TED Talks

How the gut	Your lifelong health may have been decided	COMPANY SHOULD FEEL
microbes	the day you were born, says microbiome	
you're born	researcher Henna-Maria Uusitupa. In this	
with affect	fascinating talk, she shows how the gut	
your lifelong	microbes you acquire during birth and as an	
health	infant impact your health into adulthood and	
	discusses new microbiome research that could	
	help tackle problems like obesity and diabetes.	
	Viruses have a bad reputation but some of	
	them could one day save your life, says biotech	
How a long-	entrepreneur Alexander Belcredi. In this	
forgotten virus	fascinating talk, he introduces us to phages.	SAGE VENT
could help us	naturally-occurring viruses that hunt and kill	
solve the	harmful bacteria with deadly precision, and	
antibiotics	shows how these once-forgotten organisms	1900-1920-1920-1920-1920-1920-1920-1920-
crisis	could provide new hope against the growing	
	threat of antibiotic-resistant superbugs.	
	Proteins are remarkable molecular machines:	
	they digest your food fire your neurons	
	nower your immune system and so much	
5 challenges	more What if we could design new ones with	
we could solve	functions never before seen in nature? In this	1268 4 512 (
hy designing	remarkable glimpse of the future. David Baker	62 - 21 - 3
new proteins	shares how his team at the Institute for Protein	264 T2 65
new proteins	Design is creating entirely new proteins from	THE REPART
	scratch and shows how they could help us	
	tackle five massive challenges facing humanity	
	In a story of scientific discovery chemical	
	hiologist David R Liu shares a breakthrough	
	his lah's development of hase editors that can	
	rewrite DNA This crucial sten in genome	
Can we cure	editing takes the promise of CRISPR to the part	WEAT AND A PARA
gonotic	level: if CRISPR proteins are molecular scissors	Strain Life -
dispases by	nrogrammed to cut specific DNA sequences	
rowriting DNA2	then have aditors are noncile, canable of	
rewriting DNA?	directly rewriting one DNA letter into another	当论也经历了
	Learn more about how these molecular	
	Learn more about now these molecular	
	machines work and their potential to treat or	
	even cure genetic diseases.	

Blogs/Soundbites and more

Research Activities

Research, reading and note making are essential skills for science study. For the following tasks you are going to produce 'Cornell Notes' to summarise your reading. There is a video on this under study skills in Teams or through this link <u>https://youtu.be/cLtM3pa9_SQ</u>

3. Use the large box to make notes. Leave a space between separate idea. Abbreviate where possible.

Cou	rse Name Date
P	Notes
K ₀	
• e n	
Ψţ	
₽,	
-	

4. Review and identify the key points in the left hand box

Cou	rse Name Date	
₽ P	Notes	
K ⁰	About	
• e n	Kov	
y t	Pointe	
- 2	1011113	
• Summary		
-		

5. Write a summary of the main ideas in the bottom space

Images taken from http://coe.jmu.edu/learningtoolbox/cornelInotes.html

Getting ready to study.....

BTEC Science will use your knowledge from GCSE and build on this to help you understand new and more demanding ideas. Complete the following tasks to make sure your knowledge is up to date and you are ready to start studying. You don't need to do them all, (though you can if you like), these are designed to help you prepare for your new year studying science

DNA and the Genetic Code (Unit 11)

In living organisms nucleic acids (DNA and RNA have important roles and functions related to their properties. The sequence of bases in the DNA molecule determines the structure of proteins, including enzymes. The double helix and its four bases store the information that is passed from generation to generation. The sequence of the base pairs adenine, thymine, cytosine and guanine tell ribosomes in the cytoplasm how to construct amino acids into polypeptides and produce every characteristic we see. DNA can mutate leading to diseases including cancer and sometimes anomalies in the genetic code are passed from parents to babies in disease such as cystic fibrosis, or can be developed in unborn foetuses such as Downs Syndrome.

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.bbc.co.uk/education/guides/z36mmp3/revision

http://www.s-cool.co.uk/a-level/biology/dna-and-genetic-code

And take a look at these videos: http://ed.ted.com/lessons/the-twisting-tale-of-dna-judith-hauck

http://ed.ted.com/lessons/where-do-genes-come-from-carl-zimmer

Task:

Produce a poster or PowerPoint presentation using images, keywords and simple explanations to:

- Define gene, chromosome, DNA and base pair
- Describe the structure and function of DNA and RNA
- Explain how DNA is copied in the body
- Outline some of the problems that occur with DNA replication and

Cells (Unit 1)

The cell is a unifying concept in biology, you will come across it many times during your two years of science study. Prokaryotic and eukaryotic cells can be distinguished on the basis of their structure and ultrastructure. In complex multicellular organisms cells are organised into tissues, tissues into organs and organs into systems. During the cell cycle genetic information is copied and passed to daughter cells. Daughter cells formed during mitosis have identical copies of genes while cells formed during meiosis are not genetically identical.

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.s-cool.co.uk/a-level/biology/cells-and-organelles

<u>Cell measurement - Cell structure - AQA - GCSE Biology (Single Science) Revision - AQA - BBC</u> <u>Bitesize</u>

And take a look at these videos:

https://www.youtube.com/watch?v=gcTuQpuJyD8 https://www.youtube.com/watch?v=L0k-enzoeOM https://www.youtube.com/watch?v=qCLmR9-YY7o

Task:

Produce a one-page revision guide summarising one of the following topics: Cells and Cell Ultrastructure, Prokaryotes and Eukaryotes, or Mitosis and Meiosis.

Whichever topic you choose, your revision guide should include:

- Key words and definitions
- Clearly labelled diagrams
- Short explanations of key ideas or processes.

Biological Molecules (Unit 1)

Biological molecules are often polymers and are based on a small number of chemical elements. In living organisms carbohydrates, proteins, lipids, inorganic ions and water all have important roles and functions related to their properties. DNA determines the structure of proteins, including enzymes. Enzymes catalyse the reactions that determine structures and functions from cellular to whole-organism level. Enzymes are proteins with a mechanism of action and other properties determined by their tertiary structure. ATP provides the immediate source of energy for biological processes. You will also revisit these in Unit 8

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.s-cool.co.uk/a-level/biology/biological-molecules-andenzymes

And take a look at these videos: <u>https://www.youtube.com/watch?v=H8WJ2KENIK0</u>

http://ed.ted.com/lessons/activation-energy-kickstarting-chemicalreactions-vance-kite

Task:

Krabbe disease occurs when a person doesn't have a certain enzyme in their body. The disease effects the nervous system. Write a letter to a sufferer to explain what an enzyme is. Your letter should:

- Describe the structure of an enzyme
- Explain what enzymes do inside the body

Exchange and Transport (Unit 1 and Unit 5)

Organisms need to exchange substances selectively with their environment and this takes place at exchange surfaces. Factors such as size or metabolic rate affect the requirements of organisms and this gives rise to adaptations such as specialised exchange surfaces and mass transport systems. Substances are exchanged by passive or active transport across exchange surfaces. The structure of the plasma membrane enables control of the passage of substances into and out of cells.

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.s-cool.co.uk/a-level/biology/gas-exchange http://www.s-cool.co.uk/a-level/biology/nutrition-anddigestion/revise-it/human-digestive-system

And take a look at these videos:

http://ed.ted.com/lessons/insights-into-cell-membranes-via-dishdetergent-ethan-perlstein http://ed.ted.com/lessons/what-do-the-lungs-do-emma-bryce

Task:

Create a poster or PowerPoint presentation. Your work should either compare exchange surfaces in mammals and fish or compare exchange surfaces in the lungs and the intestines. You could use a Venn diagram to do this.

Your poster should:

- Describe diffusion, osmosis and active transport
- Explain why oxygen and glucose need to be absorbed and waste products removed
- Compare and contrast your chosen focus.

Social Media

Suggestions of people to follow on Twitter:

- @wncBiology1 our college Twitter page, where Melanie posts updates, photos from the lesson, links to useful information
- Commander Chris Hadfield –former resident aboard the International Space Station @cmdrhadfield
- Tiktaalik roseae –a 375 million year old fossil fish with its own Twitter account! @tiktaalikroseae
- NASA's Voyager 2 –a satellite launched nearly 40 years ago that is now travelling beyond our Solar System @NSFVoyager2
- Neil dGrasse Tyson –Director of the Hayden Planetarium in New York @neiltyson
- Sci Curious –feed from writer and Bethany Brookshire tweeting about good, bad and weird neuroscience @scicurious
- The SETI Institute –The Search for Extra Terrestrial Intelligence, be the first to know what they find! @setiinstitute
- Carl Zimmer –Science writer Carl blogs about the life sciences @carlzimmer
- Phil Plait –tweets about astronomy and bad science @badastronomer
- Virginia Hughes –science journalist and blogger for National Geographic, keep up to date with neuroscience, genetics and behaviour @virginiahughes
- Maryn McKenna –science journalist who writes about antibiotic resistance @marynmck